
210 QUASIPERIODIC PLANE LA'ITICE WITH FIVEFOLD SYMMETRY 

The present procedure has direct relevance to the 
structure of decagonal quasicrystalline phases and 
has the potential for extension to the three- 
dimensional quasicrystal. 
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Abstract 

The composition of composite crystals, which contain 
two often incommensurate sublattices, depends on 
the ratio of the volumes of the sublattices and is 
therefore nonstoichiometric if the sublattices are 
incommensurate. The relation between the two sub- 
lattices is described by an interlattice matrix, which 
has different forms for layer and column composite 
structures and is restricted by space-fitting require- 
ments. A previously derived formalism for the 
refinement of incommensurately modulated struc- 
tures [Petricek, Coppens & Becker (1985). Acta Cryst. 
A41,478-483] has been extended to composite struc- 
tures and applied in a new computer program. The 
formalisms have been applied to the composite struc- 
tures of (BEDO-qTF)2.413, (BEDT-TIT)Hgo.776- 
(SCN)2 and (Bi,Sr,Ca)loCu17029. 

Introduction 

As more complicated solids are being synthesized in 
the search for new materials, unusual structural 
phenomena are becoming increasingly common. 

* Author to whom correspondence should be addressed. 
t Permanent address: Department of Structures and Bonding, 

Institute of Physics, Na Slovance 2, 18040 Praha 8, Czecho- 
slovakia. 

~t Permanent address: Department of Inorganic Chemistry, 
Aarhus University, DK-8000 Aarhus C, Denmark. 

Prime examples are modulations in crystals and the 
occurrence of composite (also called misfit) structures 
which contain at least two components with inter- 
penetrating but distinct lattices. 

When the ratio of the volumes of the unit cells of 
the two sublattices of a composite crystal is irrational, 
the two components will occur in nonstoichiometric 
ratios, the stoichiometry being dictated by the ratio 
of the unit-cell volumes. For ionic or partially ionic 
compounds,  electroneutrality requirements imply 
that composite solids must contain ions of mixed 
valency. Since mixed valency is often associated with 
unusual properties, it is not surprising that the search 
for synthetic metals and superconductors has led to 
the discovery of many new composite solids. Some 
examples of inorganic and organic composite crystals 
are given in Table 1. Other known examples are 
minerals and graphite intercalation compounds 
(Makovicky & Hyde, 1981) and alloys (Jeitschko & 
Parth6, 1967). 

Since the two lattices coexist in the same crystal, 
there is a mutual interaction which corresponds to a 
perturbing potential with the periodicity of the other 
sublattice. The perturbation causes each of the sublat- 
tices to be modulated with a repeat of the perturbing 
potential, which is a translation period of the second 
sublattice. As a result, the diffraction pattern of a 
composite crystal is the superposition of the diffrac- 
tion patterns of the two sublattices, plus satellite 
reflections representing the modulations (Janner & 
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Table 1. Some examples of  composite structures 

Inorganic 
Rel7Ge22 
Hg3_rAsF6 

Bap(Fe2Sa)q 

La 1.2CRS3.2 

(SnS)HaNbS2 
SrsCa6Cu24041 

Bio.31Cas.64Sr4.05CulTO29 

Bio.55Cas.60Sr3.asCu 17029 

Organic 
('I'TF)7 I5_ x 
BO2.413 
ET Hgo.776(SC N)2 
ET4Hg2.s9Brs 

BzgM219 .CHCi 3 

Reference 
Jeitschko & Parth6 (1967) 
Brown, Cutforth, Davies, Gillespie, Ireland & 
Vekris (1974) 
Grey (1975); Hoggins & Steinfink (1977); 
Swinnea & Steinfink (1980) 
Otero-Diaz, Fitzgerald, Williams & Hyde 
(1985) 
Meetsma, Wiegers, Haange & de Boer (1989) 
McCarron, Subramanian, Calabrese & Harlow 
(1988) 
Kato (1990); Kato, Takayama-Muromachi, 
Kosuda & Uchida (1988) 
Frost-Jensen (1990) 

Johnson & Watson (1976) 
Present work 
Present work 
Lyubovskaya, Zhilyaeva, Pesotskii, 
Lyubovskii, Atovmyan, D'yachenko & 
Takhirov (1987) 
Coppens, Leung, Ortega, Young & LaPorta 
(1983) 

TMA+TCNQ2/3-(I3-) t/3 Coppens, Leung, Murphy, von Tilborg, 
Epstein & Miller (1980) 

Janssen,  1980; van Smaalen,  1989, 1990). Descript ion 
of  the pat tern requires at least four indices. In the 
four-dimensional  case one sublattice is represented 
by the hklO indices, while the indices of  the second 
lattice are given by hkOm, assuming c to be the incom- 
mensurate  axis. The restriction to four  reciprocal base 
vectors implies the existence of  a common reciprocal 
plane with indices (hkO0). Reflections with all non- 
zero indices cannot  be assigned to one of  the sublat- 
tices and are the result of  the interaction between the 
lattices. They will be referred to as satellite reflections. 

In the following section we discuss limitations due 
to the nonover lap  criterion, imposed by the need to 
fit the two lattices in space. Subsequent  sections deal 
with the scattering formalisms and examples  of  their 
applicat ion to two organic and one inorganic com- 
posite structures. 

Classification of composite structures 

The possibilities for the coexistence of  two lattices in 
one crystal are restricted by space-fitting require- 
ments. In column composite structures, which in the 
case of  alloys have been described as ' chimney ladder  
structures '  (Jeitschko & Par thr ,  1967), the two lattices 
consist of  parallel columns. In layer composite struc- 
tures sheets of  the two components  are interleaved. 
The two cases are illustrated in Figs. l ( a )  and (b),  
respectively. 

In general,  we may describe the relation between 
the two direct-space lattices of  a composi te  crystal 
structure by the equat ion 

A (2) = o'A (1), (1) 

where tr is an interlattice matrix relating the direct- 

space translat ions of  the sublattices. The correspond-  
ing reciprocal-space ralat ionship is 

A (2)* = (O'-I)TA(I)* = o'*A (I)* (2) 

The t ransformat ion  matr ix o" is restricted by the 
space-fitting requirement.  In column composite  struc- 
tures the columns of  sublattices A and B have 
different periodicity along the column axis. The con- 
dition that the columns be parallel  restricts the inter- 
lattice matrix o" to the following form: 

O ' =  
0.11 O '12  0.13 1 
0.21 0.22 O"23 ) 

0 0 0.33 

(3) 

where e is taken as the common column direction. A 
further  restriction follows from the space-fitting 
requirements.  The necessity for the columns to fit 
together into an infinite array implies that we can 
define, without  loss of  generali ty,  the aB and ba axes 
to be in the planes respectively defined by aA and CA 
and by bA and CA. This leads to the following form 

1 

(b) 

Fig. 1. (a) Illustration of a column composite structure. The two 
unit cells in the ac plane are indicated. The dotted lines are 
added for perspective. (b) Illustration of a layer composite 
structure, showing three parallel layers. 
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for the direct-space interlattice matrix: 

0-11 0 O"i3 ] 
(4) 

Furthermore, to avoid overlap of the two types of 
columns the diagonal elements 0-11 and 0-22 must be 
integers or integer fractions. Values different from 
one are mathematically possible, but are the excep- 
tion. A two-dimensional example of the relation 
described by the first and third row of matrix (4) is 
outlined in Fig. l (a) .  

The reciprocal-space interlattice matrix corre- 
sponding to (4) is obtained with (2) as 

1/0-11 0 0 ] 

0"* = 0 1/0-22 0 . (5) 
--0-13/(0-110"33) --0"23/0-220-23 1/0"33 

Expression (5) implies that a* and b* axes of the 
two lattices are parallel, and identical for 0-1~ = 022 : 

1. Thus, the diffraction pattern can be described with 
only four indices. The organic examples discussed 
below, (ET)Hgo.776(SCN)2 and BO2.4I 3 are column 
composite structures of this type. 

In layer composite structures, also known as misfit 
layer structures (Macovicky & Hyde, 1981), the sub- 
lattices consist of interleaved planes of the two com- 
ponents. If the in-plane axes are labelled a and b, 
the tr matrix is given by 

O'= 
0-11 0-12 0 ] 

0-21 0-22 0 J , 
0"31 0-32 0-33 

(6) 

where the 0-33 element is restricted to be an integer n 
by the space-fitting requirement. Several inorganic 
examples of such structures have been described by 
van Smaalen, Wiegers and collaborators (Wiegers, 
Meetsma, van Smaalen, Haange, Wulff, Zeinstra, 
de Boer, Kuypers, Van Tendeloo, Van Landuyt, 
Amelinckx, Meerschaut, Rabu & Rouxel, 1989; van 
Smaalen, 1989). Because both in-plane translation 
vectors of the two sublattices may differ, layer com- 
posite structures in general require a five-dimensional 
description. If, as seems generally to be the case, the 
a and b axes of the two sublattices can be selected 
to be parallel, the relation between the two lattices is 
given by 

[ 0-~1 0 O] 

O" = 0 0"22 0 . 

0-31 0"3 2 n 
(7) 

The corresponding 
matrix becomes: 

1/0-11 
t r =  0 

0 

reciprocal-space interlattice 

0 --0-31/n0-11 1 
1/o'22 --o'32 / n0"22 . 

0 1/n 
(8) 

This expression corresponds to a five-dimensional 
description of the solid. In almost all cases described 
n = 1, with the interesting exceptions of the minerals 
koenenite (Allmann, Lohse & Hellner, 1968) and 
valleriite (Evans & Allmann, 1968), and the intercala- 
tion compound FeC13/graphite (Cowley & Ibers, 
1956), in which subsequent layers of one of the sub- 
structures have three times the translational period if 
the rhombohedral structure is described in a 
hexagonal unit cell. 

An illustration of a layer composite structure is 
given in Fig. l(b). The four-dimensional case is 
obtained when 0-~1 = 1 and 0-31 is rational (or 0 " 2 2  = 1 
and 0"32 is rational). Unlike the situation in column 
composite structures, there is no space-filling condi- 
tion which forces layer composite structures to be 
four-dimensional. 

Modulations 

The interlattice interaction introduces a perturbing 
potential in each of the component lattices, which 
gives rise to a modulation with a q vector determined 
by the periodicity of the second lattice. For column 
structures the modulation in each of the lattices is 
one dimensional. In the general case of layer com- 
posite structures, the modulation in each of the sublat- 
tices is two dimensional, and five indices are needed 
to describe the full diffraction pattern. To our knowl- 
edge no examples of five-dimensional composite 
structures with modulations have been reported, van 
Smaalen (Wiegers et al., 1989; van Smaalen, 1989) 
has derived the relations between the superspace 
group of composite solids and the superspace groups 
of each of the sublattices. 

Scattering formalism for four-dimensional composite 
crystals 

We will assume in the following discussion that the 
(hkO0) plane is common to both reciprocal sublat- 
tices, in which case the main reflections have indices 
hklO and hkOm. A general hklm reflection is both an 
mth-order satellite of sublattice A and an /th-order 
satellite of sublattice B. Similarly, except for the hkO0 
reflections, each reflection with zero l or m index is 
simultaneously a main reflection of one sublattice 
and a satellite reflection of the second lattice. It fol- 
lows that the X-ray scattering expression for each 
lattice point must contain contributions from two 
scattering processes. 
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If atoms 1 through N1 are in subsystem 1, and 
NI + 1 through N2 in subsystem 2, the structure factor 
for the case of a harmonic modulation is given by 

N I 

F(hklm)= ~ f~(Q) exp(2~riH~.r °) 
v = l  

x J. ,(2zrQ,.  U . ) ( - 1 ) "  exp (im~o.) 
N 2 

+ [ t r - '  E f . (Q)  exp(2~riH2 . r°)  
v = N t + l  

x Jt(2,rQ2. U~)(-1 )' exp (i/~o~), (9) 

where J,,,(x) is the Bessel function of ruth order, f~(Q) 
is the thermally averaged atomic scattering factor of 
atom v, r °, U~ are basic coordinates of the atom v 
and the amplitude of its modulation, respectively, ~o~ 
is the phase of the modulation and 

H~=(h,k,l),  H2: (h ,k ,m) ,  

Q = HI + ma*4 = 1"12 + la* .  

If higher harmonics are to be included, a sum over 
different contributions must be included in the scat- 
tering expression, as described elsewhere (Petricek & 
Coppens, 1988). The computer program COMPREF 
used in the refinements allows both displacive and 
occupational modulation. It incorporates the rigid- 
body displacement model of Petricek, Coppens & 
Becker (1985). 

Expression (9) differs from the expression given 
recently by Kato (1990) which requires a numerical 
integration over the modulation. 

Examples 
Three examples are discussed below. The full analyses 
of the structures will be described elsewhere. 

(1) ET Hgo.776(SCN)2 

The HgSCN salt of ET [=3,4;3'4'-bis(ethy- 
lenedithio)-2,2',5,5'-tetrathiafulvalene or BEDT- 
TTF], ET Hgo.776(SCN)2 , was synthesized by Wang 
(Wang, Beno, Carlson, Thorup, Murray, Porter, 
Williams, Maly, Bu, Petricek, Coppens, Jung & 
Whangbo, 1991) using electrocrystallization methods. 
The composite structure, suggested by the non- 
stoichiometry as determined by chemical analysis, is 
confirmed by the diffraction pattern. Satellites up to 
order three were observed. A Fourier projection based 
on the hOlO reflections, which are common to both 
reciprocal lattices, showed the Hg atoms at the origin 
and all the non-H atoms of the ET and SCN ions. 
Subsequent refinement of the substructures in space 
group P1 showed the atoms of the SCN group to be 
located in the ET sublattice, while the Hg atoms form 
the second sublattice, with a b-axis translation vector 
parallel to, but incommensurate with, the b axis of 
the first lattice. The unit cells are as follows: ET+ 

SCN, a=6 .746(2 ) ,  b=4 .114(1) ,  c=20.580(3)  A, 
t~=83.06(1),  /3=105-93(2), 7=119.01 (2) ° , Vc= 
480.23 A3, Z = 1; Hg, a = 6.758 (2), b = 5-302 (2), c = 
21.352(6) A, a = 7 3 . 1 0 ( 2 ) ,  /3=110.44(3),  ~/= 
119.17(3) ° , Vc=618.85A 3, Z = I .  The tr matrix 
defined by AHg = ~rAET+SCN is given by 

1.0 -0.0077 ! ]  

0 1.2903 . 

0 0.9083 

The ratio of the two unit-cell volumes V(ET+ 
SCN)/V(Hg)  is 480.23/618.85 = 0.776, in agreement 
with the analytical results on the composition. The 
projection of the structure down the common b axis 
is shown in Fig. 2. 

The Hg atoms have four S and four N nearest 
neighbors. Because of the incommensurability the 
separation along the b axis of the Hg atoms and its 
neighbors is continuously variable and equal to zero 
in some of the unit cells (Fig. 3a). In these cells, the 
Hg-S distance in the average structure is only 1.90 ,~,, 
which is physically unreasonable given the typical 
Hg-S coordination distance of 2.40 A. This strong 
interaction between the two lattices leads to each 
being modulated to relieve the Hg-S repulsions and 
satisfy the coordination of otherwise unbound ligands 
(Fig. 3b). An analysis of the modulational displace- 
ments using the rigid-body model for the ET and 
SCN ions (Coppens, Maly & Petricek, 1990) shows 
large displacements of both SCN and Hg, with sig- 
nificant higher harmonic contribution~ to the Hg dis- 
placements. Since the SCN ion is linear only two 
rotations around axes perpendicular to the molecule 
are considered. A description of the modulation by 

Fig. 2. The projection of the structure of ET Hgo.776(SCN)2 down 
the common b-axis direction. 
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a superposition of three harmonics gives a lengthen- 
ing of the shortest distance from 1-90 to 2.25/~, 
mainly due to very large displacements of the Hg 
atoms, as illustrated in Fig. 3. The ET translational 
and rotational amplitudes are 0.103(3)/~ and 0.5(1) °, 
respectively. Numerical information on the refine- 
ment is given in Table 2. 

Table 2. Numerical information on the refinements 

No* Nvt Rail Rmain Rsatenite 

ET Hgo.776(SCN)2 3318 154 9"2 8"7 16"7 
BO2.4I 3 2173 117 5" 5 4"6 14" 1 
MtoCut7029 666 57 6"5 6"3 10"7 

* Number of unique reflections with I > 3o-(1). 
t Number  of  variables. 

(2) BO2.413 (Wudl, Yamochi, Suzuki, lsotalo, Fire, 
Kasmai, Liou, Srdanov, Coppens, Maly & Frost- 
Jensen, 1990) 

BO [ = 3,4;3'4'-bis(ethylenedioxy)-2,2',5,5'-tetra- 
thiafulvalene or BEDO-TTF] was first synthesized by 
Wudl and co-workers (Suzuki, Yamochi, Srdanov, 
Hinkelmann & Wudl, 1989). Its triiodide salt has a 
composite structure with different periodicities of the 
BO and triiodide components along the b axis. First- 
order satellites are observable. Cell dimension are: 
BO, a = 5 . 3 2 6 9 ( 1 ) ,  b = 4 . 0 2 9 ( 1 ) ,  c=16 .885 (2 )  A, 
a = 8 8 . 2 9 ( 2 ) ,  f l = 8 3 . 4 5 ( 1 ) ,  3/=81.21 (2)°; I, a =  

J 

(a) (b) 

Fig. 3. (a) The coordination of Hg and SCN in the average 
structure of ET Hgo.776(SCN)2 as projected on the ab plane. The 
b axes of the two sublattices are vertical. The lack of com- 
mensurability leads to a continuously varyin[g coordination. Con- 
nected atoms are at distances less than 3.0 A. Large circles: Hg, 
intermediate size circles: S. (b) As for (a) but including the 
modulation. 

5.840(1), b = 9.620 (2), c =  17.115 (2) A,, a =  
99.55(1),  f l = 8 0 . 1 9 ( 1 ) ,  y = 1 1 5 . 6 7 ( 1 )  °. The b axes 
of  the two component structures are parallel, while 
a~ is in the plane of bao and aao, and c~ in the plane 
of bBo and Cao, as evident from the or matrix defined 
by Aao = trAi: 

1 0.3476 ! 1  
0 0.4188 . 

0 0-3476 

The component cell volumes have a ratio 
V( I ) /V(BO) - -2 .4 ,  implying the stoichiometry. This 
corresponds to an average net charge on the BO 
cations of  0.42 e, indicating that neutral BO molecules 
and BO ÷ monocations coexist in the solid. There is 
one BO in the BO unit cell, which at the corners is 
bounded by columns of linear I3 ions. The b-axis 
projection of the average structure of the two lattices 
is shown in Fig. 4. 

The BO molecules are treated as rigid bodies in 
the analysis of the modulation. The rigid-body dis- 
placements of  BO are directed along the molecule's 
long molecular axis, with significant amplitudes of 
0.049 and 0.071/~ for the first and third harmonic 
respectively. The direction of  this displacement 
appears controlled by the short S . . .  S contacts of 

O 

© 

Fig. 4. Projection of the structure of BO2.4I 3 down the common 
b-axis direction. 
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only 3.402/~, perpendicular to both the stacking axis 
and the long molecular axis. The I atoms show large 
translational and rotational rigid-bod~, displace- 
ments, with amplitudes of up to 0.12 A and 6.7 °, 
respectively. Similar large displacements of the I3 
ions were observed in the modulated structure of 
(ET)213 (Leung, Emge, Beno, Wang, Williams, 
Petricek & Coppens, 1985). 

(3) (Bi, Sr, Ca)loCU17029 (Frost-Jensen, 1990; Frost- 
Jensen, Larsen, Johannsen, Cisarova, Maly & Coppens, 
1991) 

(Bi, Sr, Ca)loCU17029 is a byproduct of the synthesis 
of the high-Tc Bi cuprates. The structure of the Bi-free 
and (Bi, Ca)-free phases has been analyzed in an 
approximate supercell by McCarron et al. (McCar- 
ron, Subramanian, Calabrese & Harlow, 1988), while 
a composite structure analysis of Bi0.31Cas.64Sra.os- 

Cu17029 has been described by Kato (1990). Neither 
of these two analyses includes the satellite reflections; 
68 such reflections with I >  3o"(1) were included in 
a more recent study of Bio.55Cas.6oSr3.85CulTO29 by 
Frost-Jensen et al. (1991) using the program 
C O M P R E E  

The cell dimensions of the two sublattices at 292K 
are 

M C u 2 0  3 

a=11-3819(15),  b=12.959(3) ,  c=3.9155(5)  

and 

CuO2 

a=11-3788(13),  b=12.961(2) ,  c = 2 . 7 5 2 2 ( 4 ) ~ .  

Superspace group P: F222:111. 

Fig. 5. Structure of MloCHI7029 viewed down the c axis. The b 
axis is in the vertical direction. The CuO 2 ribbons are at y = ~, 
43-. The M atoms are in columns between the CuO2 ribbons and 
the Cu203 sheets at y = 0, ½. 

The interlattice matrix of this orthorhombic crystal 
is particularly simple and given by 

[0 0]i 0 01 0 1 0 = 1 0 . 

0 0 cl/Cll 0 1"423 

This matrix conforms to the column interlattice 
matrix (4) with o'13 : 0"23 : 0 as well as to the layer 
interlattice matrix (7) with 0"31 = 0"32=0. The CuO2 
ribbons which form the second sublattice may be 
considered as columns, or alternatively as an infinite 
layer of nonconnected ribbons (Fig. 5). In such a 
case, the distinction between the two classes is no 
longer obvious. 

The refinement shows that the modulation consists 
mainly of a c-axis displacement of the Cu atoms of 
the CuO2 component of about 0.1/~, a b-axis dis- 
placement (in the direction perpendicular to the 
Cu203 sheets) of Cu by about 0.07/~, and an a-axis 
displacement by about 0-06/~ of the metal atoms. 

Support of this work by the Petroleum Research 
Fund administered by the American Chemical Society 
(PRF21392-AC6-C) and by the National Science 
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Abstract 

An efficient algorithm for the determination of an 
everywhere positive electron-density distribution that 
agrees with observed structure amplitudes has been 
used to determine the phases of X-ray diffraction data 
from recombinant bovine chymosin, a protein with 
323 amino-acid residues in the molecular chain whose 
structure was recently determined using molecular 
replacement methods. A systematic procedure for 
testing the signs of centric reflections, using the total 
entropy of the map as a figure of merit, was used to 
produce a low-resolution map. The phases of acentric 
and additional centric reflections were then chosen 
by adding them to the map with various possible 
phases and computing the total entropy of the result- 
ing map. Of 159 centric reflections whose phases were 
chosen by this procedure, 141 had the same phase as 
in the refined structure. The median absolute phase 
difference for 1811 acentric reflections was 32 °. A map 
produced from these 1970 reflections, out of 12 346 
reflections in the data set, showed a remarkable agree- 
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ment with the refined structure. This molecule is many 
times larger than any whose structures have pre- 
viously been determined without the use of isomor- 
phous replacement, molecular replacement or 
anomalous dispersion, and the map demonstrates the 
potential of maximum-entropy methods in macro- 
molecular structure determination. 

Introduction 

Direct methods of phase determination rely on the 
fact that, although diffraction intensities are propor- 
tional to the squared moduli of the structure factors, 
which are the complex values of the Fourier transform 
of the electron density in the unit cell, and thus 
contain no phase information, the non-negativity of 
the electron-density places restrictions on the possible 
values of the phases. Karle & Hauptman (1950) 
expressed these restrictions in the form of deter- 
minantal inequalities, which imply that the modulus 
of the difference between a structure factor and 
another complex number that is a function of other 
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